更新日:2025年5月2日
1分で読めます
コードテストが標準に準拠していることを確認するなど、GitLabチームが、GitLab DuoのAI機能を使用して、通常より複雑なテスト状況にどのように対処したかをご紹介します。
GitLab Duoを使用したテスト生成に関する3部構成シリーズの最初の記事では、コードテストを自動化する方法に焦点を当てました。この記事では、テスト生成にAIを使用する中で学んだ教訓をご紹介します。
全体的に見て、GitLab Duoを使用してコードテストを生成した結果には満足しています。他の言語生成の場合と同様に、インポートパスを修正したり、データセット内の内容を編集したりするなど、微調整が必要な場合もありました。より複雑なケースでは、AIが提示したソリューションでは、多くの場合、コンテキストが欠けていることを念頭に置いておく必要がありました。それでは、GitLab Duoを使用して、より複雑なテスト状況にどのように対処したかを説明します。
ソフトウェア製品の開発時にソフトウェア製品の開発時にはよくあることですが、既存のテストの更新が必要になる状況が発生しました。私たちは、一般的な問題に対してテスト機能全体を手動で調整するのではなく、VS CodeのGitLab Duo Chatウィンドウを最大限に活用しました。たとえば、テストをリファクタリングするために、「Please update the provided tests to use unittest rather than pytest. (日本語:提供されたテストをpytestではなくunittestを使用するように更新してください。)」とChatプロンプトを入力してから、GitLab Duoに更新してもらいたいテストを貼り付けました。
注:GitLab Duoの推奨事項をコードにコピー&ペーストしています。
正常に動作しているとわかっていたレガシーコードのテストを作成するのも、困難な問題でした。こういった状況では、失敗したテストと一緒にエラースニペットを提供し、GitLab Duoに新しいテストを作成するようリクエストすると非常に便利でした。ターミナルウィンドウから記録された失敗とエラーをすべてコピーしてChatに貼り付け、「Please explain and fix this failing test.(日本語:この失敗しているテストを説明して修正してください。)」といったプロンプトを入力してリクエストしたところ、テストで発生した問題の概要と、問題に対処した新しいテストが生成されました。新しいテストでも失敗が何度か特定されたため、その後、複数回のリファクタリングが必要となる場合がありました。しかし、そういった場合でも、GitLab Duoのおかげで、さまざまなリファクタリングされたソリューションを迅速かつ効率的に得られたため、チーム全体とデベロッパーの効率性が向上する結果となりました。
その他の例では、コードのモジュール化や複雑さにより、GitLab Duoの結果にばらつきが生じました。たとえば、GitLab Duoは、テストアプローチの違い(モックの使い方や、どのオブジェクトをモッキングするかなど)によって、成功するテストと失敗するテストを次々と生成することがありました。これに対処するため、GitLab Duoに成功したテストの例を提供し、一貫性を維持するために成功したテストのスタイルに合わせて個々のテストを1つずつ変更するようリクエストしました。また、同様のオブジェクトやタスクのテストがうまく行っているファイルをGitLab Duoに提供して、構造をミラーリングできるようにしました。
Pythonモジュールの開発中、GitLab Duoを活用して、モックを用いた多くのテストを生成しましたが、多くの場合、特に命名標準化に関するリファクタリングが必要となりました。こうしたケースでは、GitLab Duo Chatを活用し、どの特定のテストコンポーネントを更新するかといった手順を指示すれば、テストをリファクタリングできました。GitLab Duoにこれらの変更を行うよう指示するほうが、今まで行っていたように、テストを個別にリファクタリングするよりもはるかに高速でした。
GitLab Duoを使用することで、当社チームが今までは検討していなかった他のテストケースのテストを生成できたため、カバレッジが向上しました。幸いなことに、GitLab Duoを使用して、これらのエッジケースに迅速かつ効率的に対処し、テストカバレッジを拡大できました。これは、当社チームにとって、開発速度の向上、および堅牢な製品開発につながる重要な付加価値となりました。
GitLab Duoをうまく活用して成功を収める中で学んだ、重要な教訓をいくつかご紹介します。
このシリーズの次回の記事では、チームの自動テストプロセスにおけるGitLab Duoの影響を検証するために実行したテストと、これまでに達成した素晴らしい結果について説明します。
監修:川瀬 洋平 @ykawase
(GitLab合同会社 カスタマーサクセス本部 シニアカスタマーサクセスマネージャー)